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We relate the fractal dimension of the backbone, and the spectral dimension of Eden trees to the dynamical
exponentz. In two dimensions, it gives fractal dimension of backbone equal to 4/3 and spectral dimension of
trees equal to 5/4. In three dimensions, it provides us with another way to estinmat@erically. We get
z=1.617+0.004.[S1063-651X96)50410-1

PACS numbegps): 05.40:+j, 02.50~r, 05.45+b

Dense branching patterns are found in many differenHowever, these exponents have not been determined analyti-
physical situations in nature, e.g., coral reefs, river networksgally so far.
collapsed phase of branched polymers, very slowly evapo- In this Rapid Communication, we show that the backbone
rated films of sugar dissolved in watgt—3]. In all these exponent of the Eden trees can be related to the dynamical
systems, the Hausdorff dimension of the structure is equal texponent of the Kardar-Parisi-Zhan@KPZ) model, and
that of the embedding space but the detailed structure is dishow that in two dimensiong=1/3,d=5/4, andx=3/8. In
ferent depending on the different physical processes inthree dimensions, our method gives us another way to deter-

volved. mine the dynamical exponent numerically. The numerical
The Eden model has been studied a lot in the last decadégtermined value ig=1.617+0.004. o
mainly for the surface propertiggl]. Eden treeq5,6] are We shall considebond Eden treegBET) in this report.

simple theoretical model of dense branching structures. Ifhe model is defined in terms of the spreading of an infec-
[5], it was argued that classical diffusion on Eden trees idious disease along the bonds ofdadimensional lattice.
anomalous because of trapping in dead end branches, af@ch site may be in one of two states: healthy or infected. At
the root mean square deviation of a random walker on thdme t=0, a fixed set of “seed” sites are infected. This seed
tree increases with time &%, where the exponent does set is a single site in the so-called point seed geometry, and a

. e ~ . (d—1) dimensional hyperplane in layer seed geometry. At
not satisfy the usual relation=d/2d, whered is the spec- each time step, we select at random one site from the set of

tral dimension, andl is the (Hausdorfj fractal dimension of  peaithy sites having at least one infected neighbor. This site
the lattice. Dhar and Ramaswamy expressed the exponeni§en becomes infected, and once infected, a site never recov-
x and d in terms of an exponend related to the fractal ers. We connect this site to the existing infected cluster by
dimension of the backbone of the trd&g. Using a different  the bond connecting it to its first-infected neighbor. Each
method of analysis, and somewhat larger simulations, Nanew infected site adds exactly one bond to the cluster. The
kanishi and Herrmanf6] also calculated these exponents.resulting cluster that is generated is compact with no holes,
and is called a BET.
However, the bulk of the Bond Eden trees is@anning
*Electronic address: manna@niharika.phy.iitb.ernet.in treg, and has a complex internal structure. This may be quan-
"Electronic address: ddhar@theory.tifr.res.in tified in terms of the fractal dimension of the chemical paths
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FIG. 1. Backbone of a Bond Eden tree generated on the square
lattice from a point seed at two stages of growth of radii 80 and 130
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along the tree, distribution of branch sizes, spectral dimen-
sion of the tree, structure of its backbone, etc. We shall see FIG. 2. Variation of average mass of the backbdid,) of
below that all these measures can be determined in terms %fond Eden trees of radil®. The fractal dimension of the backbone

a single critical exponent, which we choose to be the dyig ~4/3 in complete agreement with our theoretical prediction and
namical critical exponert. the correction to scaling decreasesRas-.

There is a unique path that connects any two sites of a
tree. We define the backbone of the tree corresponding taumber of eigenvalues with frequency less thanThen if
radiusR as the set of all sites which lie on a path connectingF(wz)Nwa for small w. d is the spectral dimension of the
one of the seed sites to any of the sites of the tree at ce '
distanceR from it. Figure 1 shows the backbone of a two- ) o~ L
dimensional Eden tree grown from a single seed for twg To d_etermmed, we us‘(‘a adc.-:‘mm.atlop afg“'.“em analogous
values,R=80 and 130 lattice spacings. As the cluster growst0 that in[8]. Define the “burning time” at a site on the tree

some of the growing branches became dead ends and Tas the length of the longest directed path from the site to a

removed from the backbone. While the part of the backbonéEal Site of the tree. We construct a decimated Féecon-

near the surface changes quite fast, the structure of the backStNg of only those sites whose burning time is an exact

. : , n
bone deep inside the cluster does not change much with tim&1UltiPle of an integer scale factar. The resulting tred” is

and getsfrozen in not related tar by a simple scale changfor some figures of

From Fig. 1, it is easy to see that the backbone of Edef/€cimated trees sg@]). However, small parts of are re-
clusters has a branching structure, where each branch is dted to corresponding parts ®f by local self-affine trans-
rected radially outwards. A branch of the backbone of lengtformation, where radial distances are scaled by a fagfor
R has transverse fluctuations of ordef?, where clearly 2nd transverse_dlstarlces by a fadf. The spring con-
z=1, and is called the dynamical exponent. This exponent iStants renc’)rmellizgik%; «/b, and masses according to the
inverse of the exponent specifying the transverse fluctuation@mulaM’=b (@=DEM. Thus we get
of a directed polymer in a random mediJi.

’ "N—Rh—-1-(d-1)/z
We now argue that the backbone has a fractal dimension F(«'IM7)=b F(xIM), 2
dg given by which implies that
~ d-1
dg=1+(d—1)(1—1/z). (1) _ 2t
222+d—1' ®
Consider the backbone of the cluster when its radiuR,is For d=2, the dynamical exponent takes the well-known

and at a later stage when its radiusRs-h,h<R. Only a  KPZ value 3/2. Correspondingly, we getz=4/3 and
small fraction of the perimeter sites at radi@semain part G—x5/4. This value is in good agreement with the earlier
{ar]clutsk]terdof a_c;tivef iitei;’f traniverste Si;i TEis imlpli(;:s found that ford = 2,d=1.22+0.04, x=0.42+0.04, and for

&t the density o7 backnone SIes at Fatiuiinen CUSter y— 3,d=1.30+0.12,x=0.44+ 0.04[5]. Nakanishi and Her-

has grown to size R+h) vanishes a4~ for large _ ol o
h<R. Onceh is of orderR, it gets frozen to the value rmann estlmated_ju—z, d=1.22£0.02, andx=0.39+0.02

R~ (41’2 and does not change further. Thus the number ofVhereas fod=3,d=1.32+0.02, anck=0.30+0.02[6]. As
sites in the frozen backbone up to radRRsvaries astB7 d—co, dtends to 2, which again agrees with the exact result
wheredg is given by Eq.(1). [10]. _

The spectral dimension of the Eden trees is clearly a bulk For the root mean square displacement of ordethe
property and can also be expressed in terms @onsider a  average number of branch sites per backbone site visited is
spring network on the tree, such that at each bond of the tre®f Odrdﬂ L(dfl)lz-_ Hence the diffusign dcoln/stant is of order
there is a spring of spring constaat and a massn is at- L "% and time T scales asL?"?" Y’ so_we get
tached to each site of the tree. Llew?) be the fractional 1/x=2+(d—1)/z. We note thatx+d/2d, whered is the
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FIG. 3. Plot ofh?®N,, versush for Bond Eden trees grown on a FIG. 4. Plot ofh®*N}, versush for Bond Eden trees grown on a
base line of length 6000. Helg,, is the fractional number of dis- square base of size 18080. The average slope betweler100
tinct trees which survive up to height The average slope of this and 500 is 0.013. A straight line of slope 0.013 is plotted as a guide
plot for h between 1000 and 10 000 is at masd.003. to the eye.

fractal dimension of the substrate. However, the equality The main advantage of our simulation over earlier simu-
sign holds ifd is replaced by,,=1+(d—1)/z, which isthe lations of various versions of the Eden model, e.g., models
effective mass dimension of the graph defined by the relatio\, B, and C of Jullien and Botdtl1] is that here we are in
that the number of distinct sites within a distamcalong the ~ effect studying bulk quantitiegthe quantityN, can be re-

tree from a randomly chosen siteot near origif varies as lated to the probability that the randomly chosen site in the
rdm for larger < size of clusteiR bulk of the tree, has at least one descendant left hfteore

We have checked these predictions against numeric enerations A related quantity, the distribution of branch
. . ; P 9 izes which are disconnected on removing a randomly cho-
simulations. Figure 2 shows a plot of the average number

T - ) en bond from the tree has been studiefli?.

sites in the backbongM ) of a two-dimensional Bond Eden Encouraged by the good convergence of simulation
tree within a(Euclidean distanceR from the origin multi-  results in our model to the asymptotic values in two di-
plied by a factorR™ 2 versusR™ 3. We averaged over 12 mensions, we extended our studies to12dimensions. In
million independently generated configurations ®e=16  Fig. 4, we plot the results of simulation of Eden growth
decreased to 12000 configurations fB=1024 on the in 2+1 dimension in the layer geometry. We used as 180
square lattice. We see a reasonably good fitting of a straight 180500 simple cubic lattice, and averaged over 10 500
line in fair agreement with our theoretical predictionay ~ configurations. Figure 4 shows™*Ny, versush on a log-log
=4/3, which also indicates that the correction to scaling jplot. We estimate the slope of the curve in this
likely to be R~ 3. We estimate the error in the quoted valuespIOt to be 0.0130.003. This implies thate=5/4-0.013

. ; ! .~ +0.003, which corresponds =1.617+0.004. The value
of both the fractal dimension and the correction to scallnga:\,._’/4 corresponds to the Kim-Kosterlitz conjectut3),
exponent to be about 0.03.

In Fig. 3 how th its of simulati fEden t which is clearly ruled out by our data. Our values are in
nFg. 5 we show the resufts of simulations or £den reesgood agreement with the current best numerical estimate
on a triangular lattice grown from a line seed on a 6000, ,,—1 240+0.001 by Forrest and Tanfld] and Ala-
X10000 lattice, averaged over 2500 configurations. Wessijq énd Vénalainen’s result af=1.240+0.002 [15]
have plottedh®*Ny, versush, where Ny is the fractional 1" eyiension to higher dimensions seems possible, but

number of distinct trees which survive up to heightFrom 4 require higher computational power than available to
the scaling hypothesis,~h™¢, wherea=(d—1)/z. Inthis |5 5t present.

casea=2/3, and hence the graph should be a horizontal line.
For largeh we see that this expectation is very well satisfied,

and the numerically determined value pffrom this plot We thank Dr. T. Halpin-Healy and Dr. L. H. Tang for
givesz=3/2+0.002. providing some useful references.
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