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We relate the fractal dimension of the backbone, and the spectral dimension of Eden trees to the dynamical
exponentz. In two dimensions, it gives fractal dimension of backbone equal to 4/3 and spectral dimension of
trees equal to 5/4. In three dimensions, it provides us with another way to estimatez numerically. We get
z51.61760.004.@S1063-651X~96!50410-1#

PACS number~s!: 05.40.1j, 02.50.2r, 05.45.1b

Dense branching patterns are found in many different
physical situations in nature, e.g., coral reefs, river networks,
collapsed phase of branched polymers, very slowly evapo-
rated films of sugar dissolved in water@1–3#. In all these
systems, the Hausdorff dimension of the structure is equal to
that of the embedding space but the detailed structure is dif-
ferent depending on the different physical processes in-
volved.

The Eden model has been studied a lot in the last decade,
mainly for the surface properties@4#. Eden trees@5,6# are
simple theoretical model of dense branching structures. In
@5#, it was argued that classical diffusion on Eden trees is
anomalous because of trapping in dead end branches, and
the root mean square deviation of a random walker on the
tree increases with time astx, where the exponentx does
not satisfy the usual relationx5d̃/2d̄, whered̃ is the spec-
tral dimension, andd̄ is the~Hausdorff! fractal dimension of
the lattice. Dhar and Ramaswamy expressed the exponents
x and d̃ in terms of an exponentu related to the fractal
dimension of the backbone of the trees@5#. Using a different
method of analysis, and somewhat larger simulations, Na-
kanishi and Herrmann@6# also calculated these exponents.

However, these exponents have not been determined analyti-
cally so far.

In this Rapid Communication, we show that the backbone
exponent of the Eden trees can be related to the dynamical
exponent of the Kardar-Parisi-Zhang~KPZ! model, and
show that in two dimensions,u51/3, d̃55/4, andx53/8. In
three dimensions, our method gives us another way to deter-
mine the dynamical exponent numerically. The numerical
determined value isz51.61760.004.

We shall considerbondEden trees~BET! in this report.
The model is defined in terms of the spreading of an infec-
tious disease along the bonds of ad-dimensional lattice.
Each site may be in one of two states: healthy or infected. At
time t50, a fixed set of ‘‘seed’’ sites are infected. This seed
set is a single site in the so-called point seed geometry, and a
(d21) dimensional hyperplane in layer seed geometry. At
each time step, we select at random one site from the set of
healthy sites having at least one infected neighbor. This site
then becomes infected, and once infected, a site never recov-
ers. We connect this site to the existing infected cluster by
the bond connecting it to its first-infected neighbor. Each
new infected site adds exactly one bond to the cluster. The
resulting cluster that is generated is compact with no holes,
and is called a BET.

However, the bulk of the Bond Eden trees is aspanning
tree, and has a complex internal structure. This may be quan-
tified in terms of the fractal dimension of the chemical paths
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along the tree, distribution of branch sizes, spectral dimen-
sion of the tree, structure of its backbone, etc. We shall see
below that all these measures can be determined in terms of
a single critical exponent, which we choose to be the dy-
namical critical exponentz.

There is a unique path that connects any two sites of a
tree. We define the backbone of the tree corresponding to
radiusR as the set of all sites which lie on a path connecting
one of the seed sites to any of the sites of the tree at a
distanceR from it. Figure 1 shows the backbone of a two-
dimensional Eden tree grown from a single seed for two
values,R580 and 130 lattice spacings. As the cluster grows,
some of the growing branches became dead ends and are
removed from the backbone. While the part of the backbone
near the surface changes quite fast, the structure of the back-
bone deep inside the cluster does not change much with time,
and getsfrozen in.

From Fig. 1, it is easy to see that the backbone of Eden
clusters has a branching structure, where each branch is di-
rected radially outwards. A branch of the backbone of length
R has transverse fluctuations of orderR1/z, where clearly
z>1, and is called the dynamical exponent. This exponent is
inverse of the exponent specifying the transverse fluctuations
of a directed polymer in a random medium@7#.

We now argue that the backbone has a fractal dimension
dB given by

dB511~d21!~121/z!. ~1!

Consider the backbone of the cluster when its radius isR,
and at a later stage when its radius isR1h,h!R. Only a
small fraction of the perimeter sites at radiusR remain part
of the backbone at the later stage. Each such site gives rise to
a cluster of active sites of transverse sizeh1/z. This implies
that the density of backbone sites at radiusR, when cluster
has grown to size (R1h) vanishes ash2(d21)/z for large
h!R. Once h is of order R, it gets frozen to the value
R2(d21)/z, and does not change further. Thus the number of
sites in the frozen backbone up to radiusR varies asRdB,
wheredB is given by Eq.~1!.

The spectral dimension of the Eden trees is clearly a bulk
property and can also be expressed in terms ofz. Consider a
spring network on the tree, such that at each bond of the tree,
there is a spring of spring constantk, and a massm is at-
tached to each site of the tree. LetF(v2) be the fractional

number of eigenvalues with frequency less thanv. Then if

F(v2);v d̃ for smallv, d̃ is the spectral dimension of the
tree.

To determined̃, we use a decimation argument analogous
to that in@8#. Define the ‘‘burning time’’ at a site on the tree
T as the length of the longest directed path from the site to a
leaf site of the tree. We construct a decimated treeT8, con-
sisting of only those sites whose burning time is an exact
multiple of an integer scale factorb. The resulting treeT8 is
not related toT by a simple scale change~for some figures of
decimated trees see@9#!. However, small parts ofT are re-
lated to corresponding parts ofT8 by local self-affine trans-
formation, where radial distances are scaled by a factorb,
and transverse distances by a factorb1/z. The spring con-
stants renormalize byk85k/b, and masses according to the
formulaM 85b11(d21)/zM . Thus we get

F~k8/M 8!5b212~d21!/zF~k/M !, ~2!

which implies that

d̃52
z1d21

2z1d21
. ~3!

For d52, the dynamical exponent takes the well-known
KPZ value 3/2. Correspondingly, we getdB54/3 and
d̃55/4. This value is in good agreement with the earlier
numerical estimates of@5# and @6#. Dhar and Ramaswamy
found that ford 5 2, d̃51.2260.04,x50.4260.04, and for
d53, d̃51.3060.12,x50.4460.04@5#. Nakanishi and Her-
rmann estimatedd52, d̃51.2260.02, andx50.3960.02
whereas ford53, d̃51.3260.02, andx50.3060.02@6#. As
d→`, d̃ tends to 2, which again agrees with the exact result
@10#.

For the root mean square displacement of orderL the
average number of branch sites per backbone site visited is
of order L (d21)/z. Hence the diffusion constant is of order
L2(d21)/z and time T scales asL21(d21)/z, so we get
1/x521(d21)/z. We note thatxÞd̃/2d̄, where d̄ is the

FIG. 1. Backbone of a Bond Eden tree generated on the square
lattice from a point seed at two stages of growth of radii 80 and 130
lattice constants.

FIG. 2. Variation of average mass of the backbone^Mb& of
Bond Eden trees of radiusR. The fractal dimension of the backbone
is '4/3, in complete agreement with our theoretical prediction and
the correction to scaling decreases asR21/3.
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fractal dimension of the substrate. However, the equality
sign holds ifd̄ is replaced bydm511(d21)/z, which is the
effective mass dimension of the graph defined by the relation
that the number of distinct sites within a distancer along the
tree from a randomly chosen site~not near origin! varies as
r dm for large r! size of clusterR.

We have checked these predictions against numerical
simulations. Figure 2 shows a plot of the average number of
sites in the backbonêMb& of a two-dimensional Bond Eden
tree within a~Euclidean! distanceR from the origin multi-
plied by a factorR24/3 versusR21/3. We averaged over 12
million independently generated configurations forR516
decreased to 12 000 configurations forR51024 on the
square lattice. We see a reasonably good fitting of a straight
line in fair agreement with our theoretical prediction ofdB
54/3, which also indicates that the correction to scaling is
likely to beR21/3. We estimate the error in the quoted values
of both the fractal dimension and the correction to scaling
exponent to be about 0.03.

In Fig. 3 we show the results of simulations of Eden trees
on a triangular lattice grown from a line seed on a 6000
310 000 lattice, averaged over 2500 configurations. We
have plottedh2/3Nh versush, whereNh is the fractional
number of distinct trees which survive up to heighth. From
the scaling hypothesisNh;h2a, wherea5(d21)/z. In this
casea52/3, and hence the graph should be a horizontal line.
For largeh we see that this expectation is very well satisfied,
and the numerically determined value ofz from this plot
givesz53/260.002.

The main advantage of our simulation over earlier simu-
lations of various versions of the Eden model, e.g., models
A, B, and C of Jullien and Botet@11# is that here we are in
effect studying bulk quantities~the quantityNh can be re-
lated to the probability that the randomly chosen site in the
bulk of the tree, has at least one descendant left afterh more
generations!. A related quantity, the distribution of branch
sizes which are disconnected on removing a randomly cho-
sen bond from the tree has been studied in@12#.

Encouraged by the good convergence of simulation
results in our model to the asymptotic values in two di-
mensions, we extended our studies to 211 dimensions. In
Fig. 4, we plot the results of simulation of Eden growth
in 211 dimension in the layer geometry. We used as 180
31803500 simple cubic lattice, and averaged over 10 500
configurations. Figure 4 showsh5/4Nh versush on a log-log
plot. We estimate the slope of the curve in this
plot to be 0.01360.003. This implies thata55/420.013
60.003, which corresponds toz51.61760.004. The value
a55/4 corresponds to the Kim-Kosterlitz conjecture@13#,
which is clearly ruled out by our data. Our values are in
good agreement with the current best numerical estimate
of a51.24060.001 by Forrest and Tang@14# and Ala-
Nissila and Venalainen’s result ofa51.24060.002 @15#.
The extension to higher dimensions seems possible, but
would require higher computational power than available to
us at present.

We thank Dr. T. Halpin-Healy and Dr. L. H. Tang for
providing some useful references.
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